FARGET MATHEMATICS Jhe Excellence Key... (M.Sc, B.Ed., M.Phill, P.hd)

REG.NO:-TMC -D/79/89/36/63

General Instructions :-

All Question are compulsory : (i)

CODE:TMC-AG-PB-2

- This question paper contains 36 questions. (ii)
- Question 1-20 in **PART-** A are Objective type question carrying 1 mark (iii) each.
- Question 21-26 in **PART** -B are sort-answer type question carrying 2 (iv) mark each.
- Question 27-32 in **PART** -C are long-answer-I type question carrying 4 (v) mark each.
- Question 33-36 in **PART** -D are long-answer-II type question carrying 6 (vi) mark each
- You have to attempt only one if the alternatives in all such questions. (vii)
- (viii) Use of calculator is not permitted.
- Please check that this question paper contains 8 printed pages. (ix)
- Code number given on the right-hand side of the question paper should (x)

be written on the title page of the answer-book by the candidate.

Time: 3 Hours

Maximum Marks: 80

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony Ph.: 4010685(O), 7000636110(O) Mobile: 9425109601(P)

Visit us at www.agvatgupta.com

CLASS - XII

MATHEMATICS

PRE-BOARD EXAMINATION 2019 -20

PART - A (Question 1 to 20 carry 1 mark each.)

SECTION I: Single correct answer type

This section contains 12 multiple choice question. Each question has four

choices (A), (B), (C) & (D) out of which ONLY ONE is correct.

Q.1	$\begin{vmatrix} a & b & a\alpha + b \end{vmatrix}$		
	The determinant $\begin{vmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{vmatrix} = 0$, if a, b, c are in		
	(a) A. P. (b) G. P. (c) H. P. (d)None of these		
Q.2	If $\begin{bmatrix} 3 & 1 \\ 4 & 1 \end{bmatrix} X = \begin{bmatrix} 5 & -1 \\ 2 & 3 \end{bmatrix}$, then $X =$		
	(a) $\begin{bmatrix} -3 & 4 \\ 14 & -13 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & -4 \\ -14 & 13 \end{bmatrix}$ (c) $\begin{bmatrix} 3 & 4 \\ 14 & 13 \end{bmatrix}$ (d) $\begin{bmatrix} -3 & 4 \\ -14 & 13 \end{bmatrix}$		
Q.3	If three vectors $\mathbf{a} = 12\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = 8\mathbf{i} - 12\mathbf{j} - 9\mathbf{k}$ and $\mathbf{c} = 33\mathbf{i} - 4\mathbf{j} - 24\mathbf{k}$		
	represents a cube, then its volume will be		
	(a) 616 (b) 308 (c) 154 (d) None of these		
Q.4	If the product of distances of the point $(1, 1, 1)$ from the origin and the plane $x - y + z + k = 0$ be 5, then $k =$		
	(a) -2 $(b) -3$ $(c) 4$ $(d) 7$		
Q.5	The minimum value of $z = 2x_1 + 3x_2$ subject to the constraints		
	$2x_1 + 7x_2 \ge 22$, $x_1 + x_2 \ge 6$, $5x_1 + x_2 \ge 10$ and $x_1, x_2 \ge 0$ is (a)14 (b)		
	20 (c) 10 (d) 16		
Q.6	If $\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1) = \tan^{-1}3x$, then $x =$		

Target Mathematics by- Dr.Agyat Gupta 2 visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colonv Ph.: 4010685(O), 7000636110(O) Mobile: 9425109601(P)

Visit us at www.agyatgupta.com					
	(a) $\pm \frac{1}{2}$ (b) $0, \frac{1}{2}$ (c) $0, -\frac{1}{2}$ (d) $0, \pm \frac{1}{2}$	Q			
Q.7	If a plane meets the co-ordinate axes at A,B and C such that the centroid of the triangle is $(1, 2, 4)$ then the equation of the plane is				
	(a) $x + 2y + 4z = 12$ (b) $4x + 2y + z = 12$				
	(c) $x + 2y + 4z = 3$ (d) $4x + 2y + z = 3$				
Q.8	$\int \cos^3 x \ e^{\log(\sin x)} \ dx$ is equal to				
	(a) $-\frac{\sin^4 x}{4} + c$ (b) $-\frac{\cos^4 x}{4} + c$ (c) $\frac{e^{\sin x}}{4} + c$ (d) None of these				
Q.9	Image point of (1,3,4) in the plane $2x - y + z + 3 = 0$ is				
	(a) $(-3, 5, 2)$ (b) $(3, 5, -2)$ (c) $(3, -5, 3)$ (d)None of these				
Q.10	The co-ordinates of the foot of the perpendicular drawn from the origin				
	to a plane is $(2, 4, -3)$. The equation of the plane is				
	(a) $2x - 4y - 3z = 29$ (b) $2x - 4y + 3z = 29$				
	(c) $2x + 4y - 3z = 29$ (d)None of these				
Q.11	Fill in the blanks (Q11 – Q15)				
Q.11	If $f(x) = \frac{2x+1}{3x-2}$, then (fof)(2) is equal to				
Q.12	The value of constant $k = \dots$ so that the given function is continuous	Q			
	at the indicate point; $f(x) = \begin{cases} \frac{x^2 - 25}{x - 5}, & x \neq 5\\ k; & x = 5 \end{cases}$ at $x = 5$.				
Q.13	If $A = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$, find (x, y) = such that $A^2 - xA + yI = 0$.				

Target Mathematics by- Dr.Agyat Gupta3visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bal colonyvisit uPh. : 4010685(O), 7000636110(O) Mobile : 9425109601(P)

A particle moves along the curve $6y = x^3 + 2$. find the points on the curve at which the y-coordinate is changing 8 times as fast as xcoordinate. OR Using Lagrange's mean value theorem , find a point on the curve $y = \sqrt{x-2}$ defined on the interval [2, 3], where the tangent is parallel to the chord joining the end points of the curve . 15 The value of $i \bullet (2i \times 3k) - 4i \bullet (3k \times i) + k \bullet (i \times 5i) = ----$. OR triangle formed the the by O,A,B when of area $\vec{O} A = \hat{i} + 2\hat{j} + 3\hat{k}, \vec{O} B = -3\hat{i} - 2\hat{j} + \hat{k}$. is ------(Q16 - Q20) Answer the following questions 16 $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ 0 [0 i] , find the value of |A| + |B|. If A =and B =.17 Evaluate: $\int |\sin x - \cos x| dx$. 18 **Evaluate:** 19 $(\sin x - x \cos x) dx$ Evaluate: $x(x + \sin x)$ OR dxEvaluate: $\sqrt{\sin^3 x \sin(x+\alpha)}$

Visit us at www.agyatgupta.com

Target Mathematics by- Dr.Agyat Guptavisit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colonyPh. : 4010685(O), 7000636110(O)Mobile : 9425109601(P)

Visit us at www.agyatgupta.com

	visit us at www.agyatgupta.com				
Q.20	Order and degree of the differential equation $\frac{d^2 y}{dx^2} = \left\{ y + \left(\frac{dy}{dx}\right)^2 \right\}^{1/4}$.				
	PART – B (Question 21 to 26 carry 2 mark each.)				
Q.21	If $\cos^{-1}\frac{x}{a} + \cos^{-1}\frac{y}{b} = \alpha$ prove that				
	$\frac{x^2}{a^2} - \frac{2xy}{ab} (\cos \alpha) + \frac{y^2}{b^2} = \sin^2 \alpha .$				
	OR				
	$f(x) = \log(x + \sqrt{x^2 + 1})$				
	Determine the nature of the functions $f(x) = \log(x + \sqrt{x^2 + 1})$ for				
	even and odd.				
Q.22	If $y = \tan^{-1}\left(\frac{5ax}{a^2 - 6x^2}\right)$, prove that $\frac{dy}{dx} = \frac{3a}{a^2 + 9x^2} + \frac{2a}{a^2 + 4x^2}$.				
Q.23	Find the approximate value of a if $a^3 - 7 = 0$.				
Q.24	If $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + \lambda\hat{j} + 3\hat{k}$, find the value of λ so that $\vec{a} + \vec{b}$				
	is perpendicular to $\vec{a} - \vec{b}$.				
	OR				
	If a unit vector \vec{a} makes angles $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with x –axis and y – axis				
	respectively and an acute angle θ with z-axis, then find θ and the (scala and vector) components of \vec{a} along the axes.				
Q.25					
	vectors $\hat{i} - \hat{j} + 3\hat{k}$ and $3\hat{i} + \lambda\hat{j} + 3\hat{k}$ are equidistant from the plane				
	$\vec{r} \cdot (5 \hat{i} + 2 \hat{j} - 7 \hat{k}) + 9 = 0$.				

Target Mathematics by- Dr.Agyat Guptavisit us: agyatgupta.com ;Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. : 4010685(O), 7000636110(O)Ph. : 4010685(O), 7000636110(O)Mobile : 9425109601(P)

Visit us at www.agyatgupta.com Q.26 $\rightarrow \rightarrow$ If a,b and C are mutually perpendicular vectors of equal magnitudes, find the angles which the vector $\vec{2a} + \vec{b} + 2\vec{c}$ makes with the vector \vec{a}, \vec{b} and c. **PART - C** (Question 27 to 32 carry 4 mark each.) Check whether the relation R in R defined by $R = \{(a, b) : a \le b^3\}$ is Q.27 reflexive, symmetric or transitive. Q.28 Show that $xy = ae^{x} + be^{-x} + x^{2}$ is a solution of the differential equation $x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} - xy + x^2 - 2 = 0.$ OR If $x^{y} + y^{x} + x^{x} = a^{b}$ find dy/dx. Q.29 Solve the following differential equation: $\sqrt{1 + x^2 + y^2 + x^2y^2} + x y$ $\frac{dy}{dx} = 0$ Q.30 Evaluate: $\int \frac{x}{4-\cos^2 x} dx$. OR

Evaluate:
$$\int e^{2x} \sin(3x + 1) dx$$
.

Q.31 Find the equations of the two lines through the origin with intersect the line $\frac{x-3}{2} = \frac{y-3}{1} = \frac{z}{1}$ at angle of $\frac{\pi}{3}$.

Target Mathematics by- Dr.Agyat Gupta6visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. : 4010685(O), 7000636110(O) Mobile : 9425109601(P)

	Visit us at www.agyatgupta.com	Visit us at www.agyatgupta.com
Q.32	OR If line $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then find the value of k and hence find the equation of the plane containing these lines. A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs 250 per bag contains 3 units of nutritional element A, 2.5 units of	Q.35 Find the area of the greatest isosceles triangle that can be inscribed in a given ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ having its vertex coinciding with one extremity of major axis. OR A wire of length 28m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the
	element B and 2 units of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional elements A, 11.25 units of element B, and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag? PART - D (Question 33 to 36 carry 6 mark each.)	Q.36A variable plane which remains at a constant distance of 3p units from the origin, cuts the coordinate axes at the points A, B and C. Show that the locus of the centroid of triangle ABC is $x^{-2} + y^{-2} + z^{-2} = p^{-2}$.
Q.33		**********//*************************
	Prove that : $\begin{vmatrix} -2a & a+b & a+c \\ b+a & -2b & b+c \\ c+a & c+b & -2c \end{vmatrix} = 4(b+c)(c+a)(a+b).$	
	OR	
	If $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$, find A^{-1} and use it to solve the system of	
	equations: $x + y + 2z = 0$; $x + 2y - z = 9$; $x - 3y + 3z = -14$. Using integration, find the area of the triangle bounded by the lines $11 =$	
	7x - 2y, $19 = 3x + 2y$ and $x - y = 3$.	

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P) Target Mathematics by- Dr.Agyat Gupta8visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colonyPh. : 4010685(O), 7000636110(O) Mobile : 9425109601(P)