TRAT MBHEMADES
 The Excellence Frey...
 DIF RAVII CUPTA
 (M.Sc, B.Ed., M.Phill, Phd)

Visit us at www.agyatgupta.com

CLASS - XII
MATHEMATICS
PRE-BOARD EXAMINATION 2019-20
PART - (Question 1 to 20 carry 1 mark each.)

SECTION I: Single correct answer type

This section contains 12 multiple choice question. Each question has four choices (A), (B), (C) \& (D) out of which ONLY ONE is correct .

Q. 1	The determinant $\left\|\begin{array}{ccc}a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0\end{array}\right\|=0$, if a, b, c are in (a) A. P. (b) G. P. (c) H.P. (d)None of these
Q. 2	If $\left[\begin{array}{ll}3 & 1 \\ 4 & 1\end{array}\right] X=\left[\begin{array}{cc}5 & -1 \\ 2 & 3\end{array}\right]$, then $X=$ (a) $\left[\begin{array}{cc}-3 & 4 \\ 14 & -13\end{array}\right]$ (b) $\left[\begin{array}{cc}3 & -4 \\ -14 & 13\end{array}\right]$ (c) $\left[\begin{array}{cc}3 & 4 \\ 14 & 13\end{array}\right]$ (d) $\left[\begin{array}{cc}-3 & 4 \\ -14 & 13\end{array}\right]$
Q. 3	If three vectors $\mathbf{a}=12 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}, \quad \mathbf{b}=8 \mathbf{i}-12 \mathbf{j}-9 \mathbf{k}$ and $\mathbf{c}=33 \mathbf{i}-4 \mathbf{j}-24 \mathbf{k}$ represents a cube, then its volume will be (a) 616 (b) 308 (c) 154 (d) None of these
Q. 4	If the product of distances of the point $(1,1,1)$ from the origin and the plane $x-y+z+k=0$ be 5 , then $k=$ (a) -2 (b) -3 (c) 4 (d) 7
Q. 5	The minimum value of $z=2 x_{1}+3 x_{2}$ subject to the constraints $2 x_{1}+7 x_{2} \geq 22, x_{1}+x_{2} \geq 6,5 x_{1}+x_{2} \geq 10$ and $x_{1}, x_{2} \geq 0$ is (a) 14 (b) 20 (c) 10 (d) 16
Q. 6	If $\tan ^{-1}(x-1)+\tan ^{-1} x+\tan ^{-1}(x+1)=\tan ^{-1} 3 x$, then $x=$

Visit us at www.agyatgupta.com

(a) $\pm \frac{1}{2}$
(b)
$0, \frac{1}{2}$ (c)
$0,-\frac{1}{2}$
(d) $0, \pm \frac{1}{2}$
Q. 7 If a plane meets the co-ordinate axes at A, B and C such that the centroid of the triangle is $(1,2,4)$ then the equation of the plane is
(a) $x+2 y+4 z=12$
(b) $4 x+2 y+z=12$
(c) $x+2 y+4 z=3$
(d) $4 x+2 y+z=3$
Q. 8
$\int \cos ^{3} x e^{\log (\sin x)} d x$ is equal to
(a) $-\frac{\sin ^{4} x}{4}+c$
(b) $-\frac{\cos ^{4} x}{4}+c$
(c) $\frac{e^{\sin x}}{4}+c$
(d) None of these
Q. 9 Image point of $(1,3,4)$ in the plane $2 x-y+z+3=0$ is $\begin{array}{lll}\text { (a) }(-3,5,2) & \text { (b) }(3,5,-2) & \text { (c) }(3,-5,3)\end{array}$ (d)None of these
Q. 10 The co-ordinates of the foot of the perpendicular drawn from the origin to a plane is $(2,4,-3)$. The equation of the plane is
(a) $2 x-4 y-3 z=29$
(b) $2 x-4 y+3 z=29$
(c) $2 x+4 y-3 z=29$
(d)None of these

Fill in the blanks (Q11 - Q15)

Q. 11 If $f(x)=\frac{2 x+1}{3 x-2}$, then $(f \circ f)(2)$ is equal to-------------
Q. 12 Tthe value of constant $\mathrm{k}=\ldots \ldots .$. so that the given function is continuous
at the indicate point; $f(x)=\left\{\begin{array}{l}\frac{x^{2}-25}{x-5}, x \neq 5 \\ k ; \quad x=5\end{array}\right.$ at $\mathrm{x}=5$
Q. 13 If $A=\left[\begin{array}{ll}4 & 3 \\ 2 & 5\end{array}\right]$, find $(\mathrm{x}, \mathrm{y})=\ldots \ldots$. such that $A^{2}-x A+y I=0$

Visit us at www.agyatgupta.com

Q. 14 A particle moves along the curve $6 y=x^{3}+2$. find the points on the curve at which the y-coordinate is changing 8 times as fast as x coordinate.

OR

Using Lagrange's mean value theorem, find a point on the curve $y=\sqrt{x-2}$ defined on the interval $[2,3]$, where the tangent is parallel to the chord joining the end points of the curve.

Q. 15

The value of $i \bullet(2 j \times 3 k)-4 j \bullet(3 k \times i)+k \bullet(i \times 5 j)=----$.
the area of the triangle formed by $\mathrm{O}, \mathrm{A}, \mathrm{B}$ when $\vec{O} A=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{O} B=-3 \hat{i}-2 \hat{j}+\hat{k}$. is ----------

(Q16-Q20) Answer the following questions

Q.16	(Q16 - Q20) Answer the following questions
Q. $\mathrm{A}=\left[\begin{array}{ll}0 & i \\ i & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, find the value of $\|A\|+\|B\|$.	
Q. 18	Evaluate: $\int_{0}^{\frac{\pi}{2}}\|\sin x-\cos x\| d x$.
Qvaluate: $\int \frac{1}{\sqrt{1-e^{2 x}}} d x$.	
	Evaluate: $\int \frac{(\sin x-x \cos x) d x}{x(x+\sin x)}$.
	Evaluate: $\int \frac{d x}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}$.

visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar ; Office: 89-Laxmi bair ${ }^{3}$ Oolony Ph. : 4010685(O), 7000636110(O) Mobile : 9425109601(P)

Visit us at www.agyatgupta.com
Order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}=\left\{y+\left(\frac{d y}{d x}\right)^{2}\right\}^{1 / 4}$.

PART - B (Question 21 to 26 carry 2 mark each.)

If $\cos ^{-1} \frac{x}{a}+\cos ^{-1} \frac{y}{b}=\alpha$ prove that
$\frac{x^{2}}{a^{2}}-\frac{2 x y}{a b}(\cos \alpha)+\frac{y^{2}}{b^{2}}=\sin ^{2} \alpha$
OR
Determine the nature of the functions $f(x)=\log \left(x+\sqrt{x^{2}+1}\right)$ for even and odd.
Q. 22 If $y=\tan ^{-1}\left(\frac{5 a x}{a^{2}-6 x^{2}}\right)$, prove that $\frac{d y}{d x}=\frac{3 a}{a^{2}+9 x^{2}}+\frac{2 a}{a^{2}+4 x^{2}}$.
Q. 23 Find the approximate value of a if $a^{3}-7=0$.
Q. 24

If $\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+\lambda \hat{j}+3 \hat{k}$, find the value of λ so that $\vec{a}+\vec{b}$ is perpendicular to $\vec{a}-\vec{b}$.

OR
If a unit vector \vec{a} makes angles $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with $\mathrm{x}-$ axis and $\mathrm{y}-$ axis respectively and an acute angle θ with z-axis, then find θ and the (scalar and vector) components of \vec{a} along the axes.
Q. 25

Find the value of λ for which the points with position with position vectors $\hat{i}-\hat{j}+3 \hat{k}$ and $3 \hat{i}+\lambda \hat{j}+3 \hat{k}$ are equidistant from the plane $\vec{r} \cdot(5 \hat{i}+2 \hat{j}-7 \hat{k})+9=0$.

Visit us at www.agyatgupta.com

Q. 26 If \vec{a}, \vec{b} and \vec{c} are mutually perpendicular vectors of equal magnitudes find the angles which the vector $2 \vec{a}+\vec{b}+2 \vec{c}$ makes with the vector \vec{a}, \vec{b} and \vec{c}

PART - C (Question 27 to 32 carry 4 mark each.)

Q. 27 Check whether the relation R in R defined by $R=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric or transitive.
Show that $x y=a e^{x}+b e^{-x}+x^{2}$ is a solution of the differential equation $x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-x y+x^{2}-2=0$.

OR
If $x^{y}+y^{x}+x^{x}=a^{b}$ find dy/dx .
Q. 29 Solve the following differential equation: $\sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}+\mathrm{x} \mathrm{y}$ $\frac{d y}{d x}=0$
Q. 30

Evaluate: $\int_{0}^{\pi} \frac{x}{4-\cos ^{2} x} d x$
OR
Evaluate: $\int e^{2 x} \cdot \sin (3 x+1) d x$
Q. 31

Find the equations of the two lines through the origin with intersect the line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}$ at angle of $\frac{\pi}{3}$.

Visit us at www.agyatgupta.com

OR

If line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then find the value of k and hence find the equation of the plane containing these lines.
A farmer mixes two brands P and Q of cattle feed. Brand P , costing Rs 250 per bag contains 3 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional elements $A, 11.25$ units of element B, and 3 units of element C . The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?

PART - D (Question 33 to 36 carry 6 mark each.)

| Q. 33 | Prove that : $\left\|\begin{array}{ccc}-2 a & a+b & a+c \\ b+a & -2 b & b+c \\ c+a & c+b & -2 c\end{array}\right\|=4(b+c)(c+a)(a+b)$. |
| :---: | :---: | :---: | :---: |
| OR | |

If $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]$,
equations: $\mathrm{x}+\mathrm{y}+2 \mathrm{z}=0 ; \mathrm{x}+2 \mathrm{y}-\mathrm{z}=9 ; \mathrm{x}-3 \mathrm{y}+3 \mathrm{z}=-14$
Q. 34 Using integration, find the area of the triangle bounded by the lines $11=$ $7 \mathrm{x}-2 \mathrm{y}, 19=3 \mathrm{x}+2 \mathrm{y}$ and $\mathrm{x}-\mathrm{y}=3$.

Visit us at www.agyatgupta.com

Q. 35 Find the area of the greatest isosceles triangle that can be inscribed in a given ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ having its vertex coinciding with one extremity of major axis.

OR

A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces, so that the combined area of the square and the circle is minimum?
A variable plane which remains at a constant distance of 3 p units from the origin, cuts the coordinate axes at the points A, B and C. Show that the locus of the centroid of triangle ABC is $x^{-2}+y^{-2}+z^{-2}=p^{-2}$. $* * * * * * * * * * * / / * * * * * * * * * *$ सपने वो नहीं है जो हम नींद में देखते है, सपने वो है जो हमको नींद नहीं आने देते।

